Weighted Composition Operators on the Bloch Space The Marriage of Two Operators

Robert F. Allen

Department of Mathematical Sciences George Mason University

> Graduate Seminar September 24, 2007

Two very important operators studied on Banach spaces of analytic functions are:

() The composition operator with symbol φ

$$C_{\varphi}f=f\circ \varphi.$$

2 The multiplication operator with symbol ψ

$$M_{\psi}f=\psi\cdot f.$$

We can generalize these two operators by defining the *weighted composition operator* as

$$W_{\psi,\varphi}f = \psi C_{\varphi}f = \psi \cdot (f \circ \varphi).$$

Weighted Composition Operators in Mathematics

Evolution of the field of Composition Operators.

O All isometries on H^p (p ≠ 2) are weighted composition operators where H^p is the set of all analytic functions on the disk such that

$$\sup_{0< r<1} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p \frac{d\theta}{2\pi} < \infty.$$

F. Forelli, The Isometries of H^p, Canadian Journal of Math, 1964.

Weighted Composition Operators are tied to the classification of Dichotomies in Dynamical Systems.

C. Chicone & Y. Latushkin, *Evolution Semigroups in Dynamical Systems and Differential Equations*, AMS Press, 1999.

- Formalization of Weighted Composition Operators
- Irrends in the Study of Weighted Composition Operators
- Soundedness of Weighted Composition Operators on the Bloch Space
- Research Goals Concerning Weighted Composition Operators

Let $\Omega \subset \mathbb{C}^n$ be a domain (open and connected region) and let X be a Banach space of analytic functions on Ω .

Let φ be an analytic map from $\Omega \to \Omega$ and ψ be any analytic map on Ω . Then on the level of functions, both $f \circ \varphi$ and $\psi \cdot f$ make sense for any $f \in X$.

Fix $\varphi : \Omega \to \Omega$ analytic and ψ analytic on Ω . For $z \in \Omega$ and $f \in X$, define the weighted compositon operator $\psi C_{\varphi} : X \to Y$ by

$$(\psi C_{\varphi} f)(z) = \psi(z) \cdot (f(\varphi(z)))$$

where Y is some Banach space of analytic functions on Ω .

Trends in Studying Weighted Composition Operators

Driving Goal

The goal in studying any operator with symbol is to relate the function-theoretic properties of the symbol to the operator-theoretic properties of the operator.

For what ψ and φ is ψC_{φ} : bounded? invertible? isometric?

Other important concepts about ψC_{ω} :

estimates on norm

$$||\psi C_{\varphi}|| = \sup_{||f||=1} ||\psi C_{\varphi} f||.$$

estimates on essential norm

$$\left|\left|\psi C_{\varphi}\right|\right|_{e} = \inf_{K \text{ compact}} \left|\left|\psi C_{\varphi} - K\right|\right|.$$

Spectrum of ψC_{α} .

Boundedness of ψC_{φ} on Spaces

We now consider the most fundamental concept to study about any operator... *boundedness*.

Definition

A linear operator $T: X \to Y$ between Banach spaces is bounded if there exists M > 0 such that

 $||Tf||_{Y} \leq M ||f||_{X}.$

What properties must ψ and φ possess for ψC_{φ} to be a bounded operator from X to X? The answer is dependent on two things:

- **①** Ω : the domain of \mathbb{C}^n .
- **2** X: the space of analytic functions on which ψC_{φ} is acting.

To frame our discussion, we will fix $\Omega=\mathbb{D}$ and consider the question of boundedness on:

- Bloch space B
- **2** little Bloch space \mathcal{B}_0

R.F. Allen (GMU)

Weighted Composition Operators on the Bloch Space

The Bloch Space

A function f analytic in \mathbb{D} is said to be *Bloch* if

$$eta_f := \sup_{z\in\mathbb{D}} \left(1-|z|^2\right) \left|f'(z)\right| < \infty.$$

The space of Bloch functions, called the *Bloch space* $\mathcal{B}(\mathbb{D}) = \mathcal{B}$, is a Banach space under the norm $||f||_{\mathcal{B}} = |f(0)| + \beta_f$.

Examples

- Polynomials.
- **2** H^{∞} , the set of bounded analytic functions on \mathbb{D} .
- Solution → Analytic functions on D whose image has finite area.
 log 1+z/(1-z).

Question

If we know the ψ for which M_{ψ} is bounded and the φ for which C_{φ} is bounded, won't these be all the symbols that make ψC_{φ} bounded?

Answer: Unfortunately No!

- If M_{ψ} and C_{φ} are bounded, then ψC_{φ} is bounded.
 - ② This is not the only situation for which $\psi \mathcal{C}_{arphi}$ is bounded. Consider

$$\psi(z) = \log \frac{2}{1-z}$$
$$\varphi(z) = \frac{1-z}{2}.$$

We will see that M_{ψ} is **not bounded** on \mathcal{B} , C_{φ} is **bounded** on \mathcal{B} , but ψC_{φ} is **bounded** on \mathcal{B} .

R.F. Allen (GMU

Bounding the Norm of ψC_{φ}

Where to begin...

$$\begin{split} |\psi C_{\varphi}|| &= \sup_{||f||_{\mathcal{B}}=1} ||\psi C_{\varphi} f||_{\mathcal{B}} \\ &= \sup_{||f||_{\mathcal{B}}=1} \left(|(\psi C_{\varphi} f)(0)| + \beta_{\psi C_{\varphi} f} \right) \\ &\leq \sup_{||f||_{\mathcal{B}}=1} |(\psi C_{\varphi} f)(0)| \\ &+ \sup_{||f||_{\mathcal{B}}=1} \left(\sup_{z \in \mathbb{D}} (1 - |z|^2) \left| (\psi(z) f(\varphi(z)))' \right| \right) \end{split}$$

Goal

We want to determine what properties of ψ and φ make ψC_{φ} a bounded operator on \mathcal{B} . To do this, we will first look at how one might determine what properties of ψ and φ make the semi-norm bounded.

R.F. Allen (GMU

Weighted Composition Operator

Let $f \in \mathcal{B}$ and $z \in \mathbb{D}$. Consider the quantity

$$egin{aligned} (1-|z|^2) \left| (\psi \mathcal{C}_arphi f)'(z)
ight| &= (1-|z|^2) \left| (\psi(z) f(arphi(z)))'
ight| \ &= (1-|z|^2) \left| \psi'(z) f(arphi(z)) + \psi(z) f'(arphi(z)) arphi'(z)
ight| \ &\leq (1-|z|^2) \left| \psi'(z)
ight| \left| f(arphi(z))
ight| \ &+ (1-|z|^2) \left| \psi(z) arphi'(z)
ight| \left| f'(arphi(z))
ight| \,. \end{aligned}$$

Observations

- **()** The estimate needs to be independent of f and dependent on $||f||_{\mathcal{B}}$.
- If we can bound both parts individually, then the entire quantity will be bounded.

Useful Facts

Let $f \in \mathcal{B}$, φ analytic in \mathbb{D} and $z \in \mathbb{D}$. (a) $|f(z)| \leq \frac{1}{\log 2} \log \frac{2}{1-|z|^2} ||f||_{\mathcal{B}}$. (b) $\beta_{f \circ \varphi} \leq \beta_f$. (c) $\beta_f \leq ||f||_{\mathcal{B}}$.

$$\left(1-|z|^2
ight)\left|\psi'(z)
ight|\left|f(arphi(z))
ight|\leqrac{1}{\log2}(1-|z|^2)\left|\psi'(z)
ight|\lograc{2}{1-\left|arphi(z)
ight|^2}\left|\left|f
ight|
ight|_{\mathcal{B}}$$

 $(1-\left|z
ight|^{2})\left|f'(arphi(z))
ight|\left|\psi(z)arphi'(z)
ight|$

$$\begin{split} &= \frac{1 - \left|z\right|^2}{1 - \left|\varphi(z)\right|^2} \left|\psi(z)\varphi'(z)\right| \left(1 - \left|\varphi(z)\right|^2\right) \left|f'(\varphi(z))\right| \\ &\leq \frac{1 - \left|z\right|^2}{1 - \left|\varphi(z)\right|^2} \left|\psi(z)\varphi'(z)\right| \left|\left|f\right|\right|_{\mathcal{B}}. \end{split}$$

R.F. Allen (GMU)

Theorem (Ohno & Zhao, 2001)

Let ψ be an analytic function on the unit disk \mathbb{D} and φ an analytic self-map of \mathbb{D} . Then ψC_{φ} is bounded on the Bloch space \mathbb{B} if and only if the following are satisfied:

$$\sup_{z \in \mathbb{D}} \left(1 - |z|^2 \right) \left| \psi'(z) \right| \log \frac{2}{1 - |\varphi(z)|^2} < \infty$$
 $\sup_{z \in \mathbb{D}} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \left| \psi(z) \varphi'(z) \right| < \infty.$

Boundedness of M_{ψ}

When $\varphi(z) = z$, then $\psi C_{\varphi} = M_{\psi}$, and we have M_{ψ} is bounded on \mathcal{B} if and only if the following conditions are satisfied:

$$\hspace{0.4cm} \bullet \hspace{0.4cm} \sup_{z \in \mathbb{D}} (1-|z|^2) \left| \psi'(z) \right| \log \frac{1}{1-|z|^2} < \infty ,$$

$$\sum_{z\in\mathbb{D}} \sup |\psi(z)| < \infty.$$

This matches up with already known results.

Theorem ((Version 1) Brown & Shields, 1991)

 M_ψ is bounded on ${\mathbb B}$ if and only if $\psi\in {\sf H}^\infty$ and

$$\left|\psi'(z)
ight|=O\left(rac{1}{(1-|z|)\lograc{1}{1-|z|}}
ight)$$

Back To The Hard Question

Recall

We said earlier that for
$$\psi(z) = \log \frac{2}{1-z}$$
, M_{ψ} is not bounded. Why?

Answer

Because ψ is not bounded.

R.F. Allen (GMU

Weighted Composition Operator

Graduate Seminar 15 / 22

The little Bloch space \mathcal{B}_0

The little Bloch space

$$\mathfrak{B}_0 = \left\{ f \in \mathfrak{B} : \lim_{|z| \to 1^-} (1 - |z|^2) \left| f'(z) \right| = 0 \right\}$$

is a closed subspace of the Bloch space, and thus is a Banach space under the norm

$$||f||_{\mathcal{B}_0} = ||f||_{\mathcal{B}}.$$

Examples of Little Bloch Functions

• Polynomials:
$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$
.

Dilations:
$$g_r(z) = g(rz)$$
 for $g \in \mathcal{B}$ and $0 < r < 1$.

Properties of the Little Bloch Space

Proposition (Zhu, 2007)

Suppose
$$f \in \mathcal{B}$$
. Then $f \in \mathcal{B}_0$ iff $||f_r - f||_{\mathcal{B}} \to 0$ as $r \to 1^-$.

Corollary (Zhu, 2007)

 \mathbb{B}_0 is the closure in \mathbb{B} of the set of polynomials.

Sketch Proof.

- f_r can be approximated by polynomials in H^{∞} .
- $2 ||\cdot||_{\mathcal{B}} \leq 2 ||\cdot||_{H^{\infty}}.$
- So f_r can be approximated by polynomials in \mathcal{B} .

Proposition (Rubel & Shields, 1970)

 $(\mathcal{B}_0)^{**} \cong \mathcal{B}.$

Goal

We wish to find the conditions on ψ and φ for which ψC_{φ} is a bounded operator on \mathcal{B}_0 .

Theorem (Ohno & Zhao, 2001)

Let ψ be an analytic function on the unit disk \mathbb{D} and φ and analytic self-map of \mathbb{D} . Then ψC_{φ} is bounded on the little Bloch space \mathcal{B}_0 if and only if the follow are all satisfied:

Sup(1 - |z|²)
$$|\psi'(z)| \log \frac{2}{1 - |\varphi(z)|^2} < \infty$$
 Sup(1 - |z|²) $|\psi(z)\varphi'(z)| < \infty$.
 Sup(1 - |z|²) $|\psi(z)\varphi'(z)| < \infty$.
 $\psi \in \mathcal{B}_0$
 Im(1 - |z|²) $|\psi(z)\varphi'(z)| = 0$.

Definition

A complex-valued function ψ in \mathbb{D} is called a multiplier on $\mathcal{B}(\mathcal{B}_0)$ if $\psi \mathcal{B} \subset \mathcal{B}$ ($\psi \mathcal{B}_0 \subset \mathcal{B}_0$).

Theorem ((Full Version) Brown & Shields, 1991)

The following are equivalent:

- ψ is a multiplier on ${\mathcal B}$
- 2 ψ is a multiplier on \mathcal{B}_0
- **③** $\psi \in H^{\infty}$ and

$$\left|\psi'(z)
ight|=O\left(rac{1}{(1-|z|)\lograc{1}{1-|z|}}
ight)$$

.

Norm Estimates: ? $\leq ||\psi C_{\varphi}|| \leq$? .

• In [Xiong, 2004] established sharp bounds for C_{φ} on \mathcal{B} :

$$\begin{split} &\max\left\{1,\frac{1}{2}\log\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right\} \leq ||C_{\varphi}|| \leq \max\left\{1,\frac{1}{2}\log\frac{1+|\varphi(0)|}{1-|\varphi(0)|}+\tau_{\varphi}^{\infty}\right\}\\ &\text{where } \tau_{\varphi}^{\infty} = \sup_{z\in\mathbb{D}}\Big\{\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}}\left|\varphi'(z)\right|\Big\}. \end{split}$$

- In [A. & Colonna, 2007] established bounds on C_φ on B in higher dimensions:
 - Sharp bounds on \mathcal{B} on the unit ball \mathbb{B}_n which reduce to that above.
 - Bounds on \mathcal{B} on the unit polydisk \mathbb{D}^n .
- **③** There are no norm estimates for M_{ψ} on \mathcal{B} as of yet.

More Research Goals

Isometries: Conditions for which ψC_{φ} is an isometry

 $||\psi C_{\varphi} f||_{\mathcal{B}} = ||f||_{\mathcal{B}}.$

- The isometric composition operators on B(D) are classified.
 F. Colonna, *Characterization of the Isometric Composition Operators on the Bloch Space*, Bull. of Australian Math Soc, 2005.
- ② In [A. & Colonna, 2006] conditions are given for C_φ to be isometry on B in higher dimensions.
- **③** No conditions for M_{ψ} to be isometric.

Spectrum: Spectrum and spectral radius of ψC_{φ} , C_{φ} and M_{ψ} .

- Isometric Case:
 - Spectral Radius is 1.
 - spectrum is $\overline{\mathbb{D}}$ if surjective.
 - $\bullet\,$ spectrum is subset of $\partial \mathbb{D}$ otherwise.
- Non-Isometric Case.

References

- R. Allen & F. Colonna, On the Isometric Composition Operators on the Bloch Space of a Bounded Symmetric Domain, submitted for publication.
- L. Brown & A. L. Shields, *Multipliers and Cyclic Vectors in the Bloch Space*, Michigan Math. J. **38**, 1991, 141-146.
- S. Ohno & R. Zhao, Weighted Composition Operators on the Bloch Space, Bull. Austral. Math. Soc. **63**, 2001, 177-185.
- L. A. Rubel and A. L. Shields, *The second duals of certain spaces of analytic functions*, J. Austral. Math. Soc. **11**, 1970, 276280.
- C. Xiong, *Norm of composition operators on the Bloch space*, Bull. Austral. Math. Soc. **70** (2004), pp. 293–299.
- K. Zhu, Operator Theory in Function Spaces, Second Edition, AMS Press, 2007.