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Generalization of Two Operators

Two very important operators studied on Banach spaces of analytic
functions are:

1 The composition operator with symbol ϕ

Cϕf = f ◦ ϕ.

2 The multiplication operator with symbol ψ

Mψf = ψ · f .

We can generalize these two operators by defining the weighted

composition operator as

Wψ,ϕf = ψCϕf = ψ · (f ◦ ϕ).
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Weighted Composition Operators in Mathematics

1 Evolution of the field of Composition Operators.

2 All isometries on Hp (p 6= 2) are weighted composition operators
where Hp is the set of all analytic functions on the disk such that

sup
0<r<1

∫ 2π

0

∣

∣

∣
f (re iθ)

∣

∣

∣

p dθ

2π
<∞.

F. Forelli, The Isometries of Hp, Canadian Journal of Math, 1964.

3 Weighted Composition Operators are tied to the classification of
Dichotomies in Dynamical Systems.

C. Chicone & Y. Latushkin, Evolution Semigroups in Dynamical Systems

and Differential Equations, AMS Press, 1999.
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Formalization of Weighted Composition Operators

Let Ω ⊂ Cn be a domain (open and connected region) and let X be a
Banach space of analytic functions on Ω.

Let ϕ be an analytic map from Ω → Ω and ψ be any analytic map on Ω.
Then on the level of functions, both f ◦ ϕ and ψ · f make sense for any
f ∈ X .

Fix ϕ : Ω → Ω analytic and ψ analytic on Ω. For z ∈ Ω and f ∈ X , define
the weighted compositon operator ψCϕ : X → Y by

(ψCϕf )(z) = ψ(z) · (f (ϕ(z)))

where Y is some Banach space of analytic functions on Ω.
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Trends in Studying Weighted Composition Operators

Driving Goal

The goal in studying any operator with symbol is to relate the
function-theoretic properties of the symbol to the operator-theoretic
properties of the operator.

For what ψ and ϕ is ψCϕ: bounded? invertible? isometric?

Other important concepts about ψCϕ:

1 estimates on norm

||ψCϕ|| = sup
||f ||=1

||ψCϕf || .

2 estimates on essential norm

||ψCϕ||e = inf
K compact

||ψCϕ − K || .

3 spectrum of ψCϕ.
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Boundedness of ψCϕ on Spaces

We now consider the most fundamental concept to study about any
operator... boundedness.

Definition

A linear operator T : X → Y between Banach spaces is bounded if there

exists M > 0 such that

||Tf ||Y ≤ M ||f ||X .

What properties must ψ and ϕ possess for ψCϕ to be a bounded operator
from X to X? The answer is dependent on two things:

1 Ω: the domain of Cn.
2 X : the space of analytic functions on which ψCϕ is acting.

To frame our discussion, we will fix Ω = D and consider the question of
boundedness on:

1 Bloch space B

2 little Bloch space B0
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Weighted Composition Operators on the Bloch Space

The Bloch Space

A function f analytic in D is said to be Bloch if

βf := sup
z∈D

(1 − |z |2)
∣

∣f ′(z)
∣

∣ <∞.

The space of Bloch functions, called the Bloch space B(D) = B, is a
Banach space under the norm ||f ||

B
= |f (0)| + βf .

Examples

1 Polynomials.

2 H∞, the set of bounded analytic functions on D.

3 Analytic functions on D whose image has finite area.

4 log
1 + z

1 − z
.
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Why is this Hard?

Question

If we know the ψ for which Mψ is bounded and the ϕ for which Cϕ is
bounded, won’t these be all the symbols that make ψCϕ bounded?

Answer: Unfortunately No!

1 If Mψ and Cϕ are bounded, then ψCϕ is bounded.

2 This is not the only situation for which ψCϕ is bounded. Consider

ψ(z) = log
2

1 − z

ϕ(z) =
1 − z

2
.

We will see that Mψ is not bounded on B, Cϕ is bounded on B, but
ψCϕ is bounded on B.
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Bounding the Norm of ψCϕ

Where to begin...

||ψCϕ|| = sup
||f ||

B
=1

||ψCϕf ||
B

= sup
||f ||

B
=1

(

|(ψCϕf )(0)| + βψCϕf

)

≤ sup
||f ||

B
=1

|(ψCϕf )(0)|

+ sup
||f ||

B
=1

(

sup
z∈D

(1 − |z |2)
∣

∣(ψ(z)f (ϕ(z)))′
∣

∣

)

Goal

We want to determine what properties of ψ and ϕ make ψCϕ a bounded
operator on B. To do this, we will first look at how one might determine
what properties of ψ and ϕ make the semi-norm bounded.
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Let f ∈ B and z ∈ D. Consider the quantity

(1 − |z |2)
∣

∣(ψCϕf )′(z)
∣

∣ = (1 − |z |2)
∣

∣(ψ(z)f (ϕ(z)))′
∣

∣

= (1 − |z |2)
∣

∣ψ′(z)f (ϕ(z)) + ψ(z)f ′(ϕ(z))ϕ′(z)
∣

∣

≤ (1 − |z |2)
∣

∣ψ′(z)
∣

∣ |f (ϕ(z))|

+ (1 − |z |2)
∣

∣ψ(z)ϕ′(z)
∣

∣

∣

∣f ′(ϕ(z))
∣

∣ .

Observations
1 The estimate needs to be independent of f and dependent on ||f ||

B
.

2 If we can bound both parts individually, then the entire quantity will
be bounded.
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Useful Facts

Let f ∈ B, ϕ analytic in D and z ∈ D.

1 |f (z)| ≤
1

log 2
log

2

1 − |z |2
||f ||

B
.

2 βf ◦ϕ ≤ βf .

3 βf ≤ ||f ||
B
.

(1 − |z |2)
∣

∣ψ′(z)
∣

∣ |f (ϕ(z))| ≤
1

log 2
(1 − |z |2)

∣

∣ψ′(z)
∣

∣ log
2

1 − |ϕ(z)|2
||f ||

B

(1 − |z |2) |f ′(ϕ(z))| |ψ(z)ϕ′(z)|

=
1 − |z |2

1 − |ϕ(z)|2
∣

∣ψ(z)ϕ′(z)
∣

∣ (1 − |ϕ(z)|2)
∣

∣f ′(ϕ(z))
∣

∣

≤
1 − |z |2

1 − |ϕ(z)|2
∣

∣ψ(z)ϕ′(z)
∣

∣ ||f ||
B
.
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The Main Result

Theorem (Ohno & Zhao, 2001)

Let ψ be an analytic function on the unit disk D and ϕ an analytic

self-map of D. Then ψCϕ is bounded on the Bloch space B if and only if

the following are satisfied:

1 sup
z∈D

(1 − |z |2)
∣

∣ψ′(z)
∣

∣ log
2

1 − |ϕ(z)|2
<∞,

2 sup
z∈D

1 − |z |2

1 − |ϕ(z)|2
∣

∣ψ(z)ϕ′(z)
∣

∣ <∞.
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What Do We Know About Mψ

Boundedness of Mψ

When ϕ(z) = z , then ψCϕ = Mψ, and we have Mψ is bounded on B if
and only if the following conditions are satisfied:

1 sup
z∈D

(1 − |z |2)
∣

∣ψ′(z)
∣

∣ log
1

1 − |z |2
<∞,

2 sup
z∈D

|ψ(z)| <∞.

This matches up with already known results.

Theorem ((Version 1) Brown & Shields, 1991)

Mψ is bounded on B if and only if ψ ∈ H∞ and

∣

∣ψ′(z)
∣

∣ = O

(

1

(1 − |z |) log 1
1−|z |

)

.
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Back To The Hard Question

Recall

We said earlier that for ψ(z) = log
2

1 − z
, Mψ is not bounded. Why?

1 1

π
2

−π
2

z 7→ 2
1−z w 7→ log w

Answer

Because ψ is not bounded.
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Weighted Composition Operators on the Little Bloch Space

The little Bloch space B0

The little Bloch space

B0 =

{

f ∈ B : lim
|z |→1−

(1 − |z |2)
∣

∣f ′(z)
∣

∣ = 0

}

is a closed subspace of the Bloch space, and thus is a Banach space under
the norm

||f ||
B0

= ||f ||
B
.

Examples of Little Bloch Functions

1 Polynomials: f (z) = a0 + a1z + a2z
2 + · · · + anz

n.

2 Dilations: gr (z) = g(rz) for g ∈ B and 0 < r < 1.
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Properties of the Little Bloch Space

Proposition (Zhu, 2007)

Suppose f ∈ B. Then f ∈ B0 iff ||fr − f ||
B
→ 0 as r → 1−.

Corollary (Zhu, 2007)

B0 is the closure in B of the set of polynomials.

Sketch Proof.
1 fr can be approximated by polynomials in H∞.

2 ||·||
B
≤ 2 ||·||H∞ .

3 So fr can be approximated by polynomials in B.

Proposition (Rubel & Shields, 1970)

(B0)
∗∗ ∼= B.
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Goal

We wish to find the conditions on ψ and ϕ for which ψCϕ is a bounded
operator on B0.

Theorem (Ohno & Zhao, 2001)

Let ψ be an analytic function on the unit disk D and ϕ and analytic

self-map of D. Then ψCϕ is bounded on the little Bloch space B0 if and

only if the follow are all satisfied:

1 sup
z∈D

(1 − |z |2)
∣

∣ψ′(z)
∣

∣ log
2

1 − |ϕ(z)|2
<∞,

2 sup
z∈D

1 − |z |2

1 − |ϕ(z)|2
∣

∣ψ(z)ϕ′(z)
∣

∣ <∞.

3 ψ ∈ B0

4 lim
|z |→1−

(1 − |z |2)
∣

∣ψ(z)ϕ′(z)
∣

∣ = 0.
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Definition

A complex-valued function ψ in D is called a multiplier on B(B0) if

ψB ⊂ B (ψB0 ⊂ B0).

Theorem ((Full Version) Brown & Shields, 1991)

The following are equivalent:

1 ψ is a multiplier on B

2 ψ is a multiplier on B0

3 ψ ∈ H∞ and

∣

∣ψ′(z)
∣

∣ = O

(

1

(1 − |z |) log 1
1−|z |

)

.

R.F. Allen (GMU) Weighted Composition Operators Graduate Seminar 19 / 22



Research Goals

Norm Estimates: ? ≤ ||ψCϕ|| ≤ ? .

1 In [Xiong, 2004] established sharp bounds for Cϕ on B:

max

{

1,
1

2
log

1 + |ϕ(0)|

1 − |ϕ(0)|

}

≤ ||Cϕ|| ≤ max

{

1,
1

2
log

1 + |ϕ(0)|

1 − |ϕ(0)|
+ τ∞ϕ

}

where τ∞ϕ = supz∈D

{

1−|z |2

1−|ϕ(z)|2
|ϕ′(z)|

}

.

2 In [A. & Colonna, 2007] established bounds on Cϕ on B in higher
dimensions:

Sharp bounds on B on the unit ball Bn which reduce to that above.
Bounds on B on the unit polydisk Dn.

3 There are no norm estimates for Mψ on B as of yet.
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More Research Goals

Isometries: Conditions for which ψCϕ is an isometry

||ψCϕf ||
B

= ||f ||
B
.

1 The isometric composition operators on B(D) are classified.
F. Colonna, Characterization of the Isometric Composition Operators on the

Bloch Space, Bull. of Australian Math Soc, 2005.

2 In [A. & Colonna, 2006] conditions are given for Cϕ to be isometry on
B in higher dimensions.

3 No conditions for Mψ to be isometric.

Spectrum: Spectrum and spectral radius of ψCϕ, Cϕ and Mψ.

1 Isometric Case:
Spectral Radius is 1.
spectrum is D if surjective.
spectrum is subset of ∂D otherwise.

2 Non-Isometric Case.
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